378 research outputs found

    Electroencephalogram Signal Processing For Hybrid Brain Computer Interface Systems

    Get PDF
    The goal of this research was to evaluate and compare three types of brain computer interface (BCI) systems, P300, steady state visually evoked potentials (SSVEP) and Hybrid as virtual spelling paradigms. Hybrid BCI is an innovative approach to combine the P300 and SSVEP. However, it is challenging to process the resulting hybrid signals to extract both information simultaneously and effectively. The major step executed toward the advancement to modern BCI system was to move the BCI techniques from traditional LED system to electronic LCD monitor. Such a transition allows not only to develop the graphics of interest but also to generate objects flickering at different frequencies. There were pilot experiments performed for designing and tuning the parameters of the spelling paradigms including peak detection for different range of frequencies of SSVEP BCI, placement of objects on LCD monitor, design of the spelling keyboard, and window time for the SSVEP peak detection processing. All the experiments were devised to evaluate the performance in terms of the spelling accuracy, region error, and adjacency error among all of the paradigms: P300, SSVEP and Hybrid. Due to the different nature of P300 and SSVEP, designing a hybrid P300-SSVEP signal processing scheme demands significant amount of research work in this area. Eventually, two critical questions in hybrid BCl are: (1) which signal processing strategy can best measure the user\u27s intent and (2) what a suitable paradigm is to fuse these two techniques in a simple but effective way. In order to answer these questions, this project focused mainly on developing signal processing and classification technique for hybrid BCI. Hybrid BCI was implemented by extracting the specific information from brain signals, selecting optimum features which contain maximum discrimination information about the speller characters of our interest and by efficiently classifying the hybrid signals. The designed spellers were developed with the aim to improve quality of life of patients with disability by utilizing visually controlled BCI paradigms. The paradigms consist of electrodes to record electroencephalogram signal (EEG) during stimulation, a software to analyze the collected data, and a computing device where the subject’s EEG is the input to estimate the spelled character. Signal processing phase included preliminary tasks as preprocessing, feature extraction, and feature selection. Captured EEG data are usually a superposition of the signals of interest with other unwanted signals from muscles, and from non-biological artifacts. The accuracy of each trial and average accuracy for subjects were computed. Overall, the average accuracy of the P300 and SSVEP spelling paradigm was 84% and 68.5 %. P300 spelling paradigms have better accuracy than both the SSVEP and hybrid paradigm. Hybrid paradigm has the average accuracy of 79 %. However, hybrid system is faster in time and more soothing to look than other paradigms. This work is significant because it has great potential for improving the BCI research in design and application of clinically suitable speller paradigm

    Development of a Laser-Spark Multicharged Ion System – Application in Shallow Implantation of Sic by Boron and Barium

    Get PDF
    A novel multicharged ion source, using laser ablation induced plasma coupled with spark discharge, has been investigated in this work. The designed and demonstrated ion source is cost-effective, compact and versatile. Experiments are described with the intention of demonstrating the practicability of ion implantation via laser ion source. Multicharged aluminum ions are generated by a ns Q-switched Nd:YAG laser pulse ablation of an aluminum target in an ultrahigh vacuum. The experiments are conducted using laser pulse energies of 45–90 mJ focused on the Al target surface by a lens with an 80-cm focal length to 0.0024 cm2 spot area and incident at 45° with the Al target surface. With the increase in the laser pulse energy, a slow increase in the number of ions generated is observed. The generation of ions with a higher charge state is also observed with the increase in the laser pulse energy. For 5 kV accelerating voltage applied to the Al target and using laser energy of 90 mJ, up to Al4+ charge is delivered to the detector which is located 140 cm away from the Al target. Raising accelerating voltage increases the charge extraction from the laser plasma and the energy of multicharged ions. The components of a transport line for a laser multicharged ion source are described. Aluminum and carbon multicharged ions are generated by a Q-switched, nanosecond Nd:YAG laser (wavelength λ = 1064 nm, pulse width τ = 7.4 ns, and pulse energy up to 82 mJ) ablation of a target in a vacuum chamber. Time-of-flight and three-grid retarding ion energy analyzers are used to determine the velocity and the charge state of the ions. A three-electrode cylindrical einzel lens is used to focus the ions. At 30 cm from the center of the focusing electrode of the einzel lens, Al1+ and Al2+ have a minimum beam diameter of ∼1.5 mm, while for Al3+ and Al4+ the minimum beam diameter is ∼2.5 mm. The simulation of the ion trajectories is done using SIMION 8.1. A high voltage pulse applied to a set of two parallel deflecting plates is used for the pickup of ions with different charge states according to their time-of-flight. An electrostatic cylindrical ion deflector is used for analysis and selection of charges with specific energy-to-charge ratio. The design of these transport line components and their operation are described. A spark discharge is coupled to a laser multicharged ion source to enhance ion generation. The laser plasma triggers a spark discharge with electrodes located in front of the ablated target. For an aluminum target, the spark discharge results in significant enhancement in the generation of multicharged ions along with higher charge states than observed with the laser source alone. When a Nd:YAG laser pulse (wavelength 1064 nm, pulse width 7.4 ns, pulse energy 72 mJ, laser spot area on target 0.0024 cm2) is used, the total multicharged ions detected by a Faraday cup is 1.0 nC with charge state up to Al3+. When the spark amplification stage is used (0.1 μF capacitor charged to 5.0 kV), the total charge measured increases by a factor of ∼9 with up to Al6+ charge observed. Using laser pulse energy of 45 mJ, charge amplification by a factor of ∼13 was observed for a capacitor voltage of 4.5 kV. The spark discharge in-creases the multicharged ion generation without increasing target ablation, which solely results from the laser pulse. This allows for increased multicharged ion generation with relatively low laser energy pulses and less damage to the surface of the target. Laser plasma generated by ablation of an Al target in vacuum is characterized by ion time-of-flight combined with optical emission spectroscopy. A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, pulse width τ ∼ 7 ns, and fluence F ≤ 38 J/cm2) is used to ablate the Al target. Ions are accelerated according to their charge state by the double-layer potential developed at the plasma-vacuum interface. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. Optical emission spectroscopy of the Al plasma gives significantly lower plasma temperature than the ion temperature obtained from the ion time-of-flight, due to the difference in the temporal and spatial regions of the plasma plume probed by the two methods. Applying an external electric field in the plasma expansion region in a direction parallel to the plume expansion increases the line emission intensity. However, the plasma temperature and density, as measured by optical emission spectroscopy, remain unchanged. Aluminum multicharged ion generation from femtosecond laser ablation is studied. A Ti:sapphire laser (wavelength 800 nm, pulse width ∼100 fs, and maximum laser fluence of 7.6 J/cm2) is used. Ion yield and energy distribution of each charge state are measured. A linear relationship between the ion charge state and the equivalent acceleration energy of the individual ion species is observed and is attributed to the presence of an electric field within the plasma-vacuum boundary that accelerates the ions. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. For Al1+ and Al2+, the ion energy distributions have two components; the faster one can be attributed to multiphoton laser ionization, while the slower one is possibly due to collisional processes. Ion extraction from the plasma is increased with an applied external electric field, which is interpreted to be due to the retrograde motion of the plasma edge because of the external electric field. Multicharged ion generation by femtosecond laser ablation is compared to previously reported ion generation with nanosecond laser ablation and is shown to require significantly lower laser fluence and generates higher charge states and more energetic ions. Fully-stripped boron ions are generated by a nanosecond Nd:YAG laser (wave-length λ = 1064 nm, pulse width τ = 7 ns, and maximum laser pulse energy E = 175 mJ) ablation of a B target in vacuum. Higher charge states, along with the increase in the number of ions detected, are observed with the increase in the laser fluence. An external electric field between the end of the expansion chamber and a grounded grid is used to extract the ions and accelerate them according to their charge state. For 5 kV accelerating voltage applied to the B target and using a laser fluence of 115 J/cm2, ∼1.5 nC of total charge is delivered to the detector which is located ∼150 cm away from the B target. Ion deflection by an electrostatic field separates the ions from the neutrals and makes this geometry suitable for ion implantation. The developed multicharged ion deposition and implantation system was used to per-form interfacial treatment of the SiC/SiO2 interface using boron and barium ions. SRIM simulation was used to estimate the ion penetration depth in the SiC substrate. The multicharged ions were used for shallow ion implantation in 4H SiC. The optical bandgap of the 4H SiC was reduced due to boron ion implantation. Several MOSCAP devices were fabricated with a combination of boron and barium shallow implantation. High-low C-V measurements were used to characterize the MOSCAPs. Boron implantation affects the flatband voltage significantly, while the effect of barium ion implantation is negligible. Shallow boron implantation in the SiC/SiO2 interface reduces the flatband voltage from 4.5 V to 0.04 V

    A Nonsmooth Maximum Principle for Optimal Control Problems with State and Mixed Constraints-Convex Case

    Full text link
    Here we derive a nonsmooth maximum principle for optimal control problems with both state and mixed constraints. Crucial to our development is a convexity assumption on the "velocity set". The approach consists of applying known penalization techniques for state constraints together with recent results for mixed constrained problems.Comment: Published in 'Discrete and Continuous Dynamical Systems, Vol. 2011, pp. 174-18

    Spark Discharge Coupled Laser Multicharged Ion Source

    Get PDF
    A spark discharge is coupled to a laser multicharged ion source to enhance ion generation. The laser plasma triggers a spark discharge with electrodes located in front of the ablated target. For an aluminum target, the spark discharge results in significant enhancement in the generation of multicharged ions along with higher charge states than observed with the laser source alone. When a Nd:YAG laser pulse (wavelength 1064 nm, pulse width 7.4 ns, pulse energy 72 mJ, laser spot area on target 0.0024 cm2) is used, the total multicharged ions detected by a Faraday cup is 1.0 nC with charge state up to Al3+. When the spark amplification stage is used (0.1 μF capacitor charged to 5.0 kV), the total charge measured increases by a factor of ∼9 with up to Al6+ charge observed. Using laser pulse energy of 45 mJ, charge amplification by a factor of ∼13 was observed for a capacitor voltage of 4.5 kV. The spark discharge increases the multicharged ion generation without increasing target ablation, which solely results from the laser pulse. This allows for increased multicharged ion generation with relatively low laser energy pulses and less damage to the surface of the target. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4923457

    Characterization of Laser-Generated Aluminum Plasma Using Ion Time-of-Flight and Optical Emission Spectroscopy

    Get PDF
    Laser plasma generated by ablation of an Al target in vacuum is characterized by ion time-of-flight combined with optical emission spectroscopy. A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, pulse width τ ∼ 7 ns, and fluence F ≤ 38 J/cm2) is used to ablate the Al target. Ion yield and energy distribution of each charge state are measured. Ions are accelerated according to their charge state by the double-layer potential developed at the plasma-vacuum interface. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. Optical emission spectroscopy of the Al plasma gives significantly lower plasma temperature than the ion temperature obtained from the ion time-of-flight, due to the difference in the temporal and spatial regions of the plasma plume probed by the two methods. Applying an external electric field in the plasma expansion region in a direction parallel to the plume expansion increases the line emission intensity. However, the plasma temperature and density, as measured by optical emission spectroscopy, remain unchanged

    Mathematical Model Applied to Green Building Concept for Sustainable Cities Under Climate Change

    Get PDF
    Recently the effect of greenhouse gases (GHGs) is worldwide terrified anxiety to the public and scholars. Even this global problem is one of the great issues that continuously makes worrying the governments and environmentalists, but its solution findings are not out of the image at all. In this study, we have proposed and analysed a mathematical model for the solvable management of GHGs by sowing the seeds of green building dynamic systems. Moreover, in the model, the human community is used to enhance the production power of individuals of green buildings by absorbing the GHGs. The model is analysed by stability analysis at the equilibrium points: trivial and global equilibrium, and also by convincing the stability and instability of the system of equations. The behaviour of the propound model has been developed by numerical simulations which shows the rate of the fruitfulness of GHG components

    A variant of nonsmooth maximum principle for state constrained problems

    Full text link
    We derive a variant of the nonsmooth maximum principle for problems with pure state constraints. The interest of our result resides on the nonsmoothness itself since, when applied to smooth problems, it coincides with known results. Remarkably, in the normal form, our result has the special feature of being a sufficient optimality condition for linearconvex problems, a feature that the classical Pontryagin maximum principle had whereas the nonsmooth version had not. This work is distinct to previous work in the literature since, for state constrained problems, we add the Weierstrass conditions to adjoint inclusions using the joint subdifferentials with respect to the state and the control. Our proofs use old techniques developed in [16], while appealing to new results in [7].Comment: 6 pages, No figures, Conference Proceeding

    Aluminum Multicharged Ion Generation from Femtosecond Laser Plasma

    Get PDF
    Aluminum multicharged ion generation from femtosecond laser ablation is studied. A Ti:sapphire laser (wavelength 800 nm, pulse width ∼100 fs, and maximum laser fluence of 7.6 J/cm2) is used. Ion yield and energy distribution of each charge state are measured. A linear relationship between the ion charge state and the equivalent acceleration energy of the individual ion species is observed and is attributed to the presence of an electric field within the plasma-vacuum boundary that accelerates the ions. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. For Al1+ and Al2+, the ion energy distributions have two components; the faster one can be attributed to multiphoton laser ionization, while the slower one is possibly due to collisional processes. Ion extraction from the plasma is increased with an applied external electric field, which is interpreted to be due to the retrograde motion of the plasma edge as a result of the external electric field. Multicharged ion generation by femtosecond laser ablation is compared to previously reported ion generation with nanosecond laser ablation and is shown to require significantly lower laser fluence and generates higher charge states and more energetic ions. © 2017 Author(s)
    • …
    corecore